

## Note

### Synthesis of 2-phenylimino-3-aryl-4-S-benzyl-6-hepta-O-acetyl- $\beta$ -lactosylimino-2,3-dihydro-1,3,5-thiadiazine hydrochlorides

P V Tale & S P Deshmukh\*

P. G. Department of Chemistry, Shri Shivaji College  
Akola 444 001 (M. S.) India

E-mail: prashanttale@rediffmail.com

Received 06 December 2004; accepted (revised) 21 June 2005

2-Phenylimino-3-aryl-4-S-benzyl-6-hepta-O-acetyl- $\beta$ -lactosylimino-2,3-dihydro-1,3,5-thiadiazine hydrochlorides have been prepared by the interaction of 1-aryl-5-hepta-O-acetyl- $\beta$ -D-lactosyl-2-S-benzyl-2,4-isodithiobiurets and phenyl isocyanodichloride. The structures of these new N-lactosylated-1,3,5-thiadiazines have been established on the basis of usual chemical transformations and IR, NMR and mass spectral studies.

**Keywords:** 1-Aryl-5-hepta-O-acetyl- $\beta$ -D-lactosyl-2-S-benzyl-2,4-isodithiobiurets, phenyl isocyanodichloride,  $\beta$ -lactosylimino-1,3,5-thiadiazine

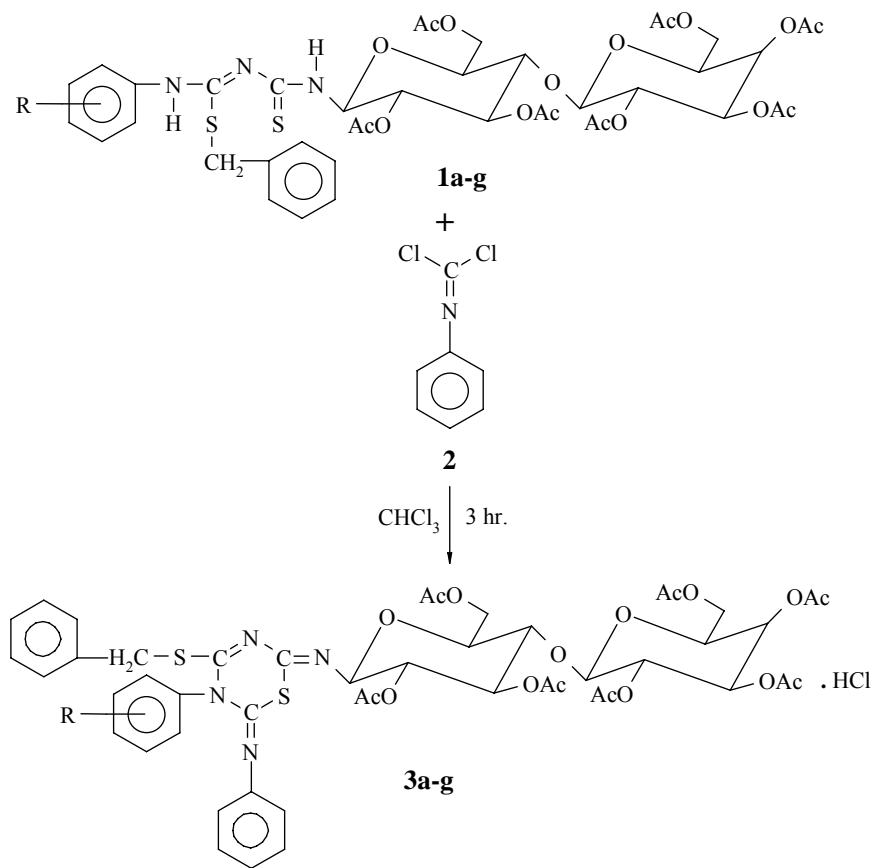
IPC: Int.Cl.<sup>7</sup> C 07 D

Very few compounds containing thioamido group and having lactosyl substituent on nitrogen are known which have been studied for their biological activity<sup>1,2</sup>. A simple method for the synthesis of 1,3,5-thiadiazines has been reported. This was essentially based on the reaction of phenylisocyanodichloride with thioamido group containing compounds<sup>3,4</sup>. Thiadiazines containing  $\beta$ -D-lactosyl substituent on nitrogen have not been prepared earlier. Herein is reported the synthesis of several N-lactosylated-1,3,5-thiadiazine hydrochlorides prepared by the reaction of 1-aryl-5-hepta-O-acetyl- $\beta$ -D-lactosyl-2-S-benzyl-2,4-isodithiobiurets with phenylisocyanodichloride. The required 1-aryl-5-hepta-O-acetyl- $\beta$ -D-lactosyl-2-S-benzyl-2,4-isodithiobiurets were obtained by the reaction of 1-aryl-S-benzyl isothiocarbamides<sup>5</sup> with hepta-O-acetyl- $\beta$ -D-lactosyl isothiocyanate<sup>6</sup>.

## Results and Discussion

2-Phenylimino-3-aryl-4-S-benzyl-6-hepta-O-acetyl- $\beta$ -lactosylimino-2,3-dihydro-1,3,5-thiadiazine hydrochloride **3a-g** (**Scheme I**) was prepared by the

condensation of 1-aryl-5-hepta-O-acetyl- $\beta$ -D-lactosyl-2-S-benzyl-2,4-isodithiobiuret **1a-g** with phenylisocyanodichloride **2** in  $\text{CHCl}_3$ . After condensation, the solvent was distilled off to obtain a sticky residue. This residue was triturated with petroleum ether (60-80°C, 60 mL) to afford a pale yellow solid **3a-g**. The product was found to be non-desulphurised when boiled with alkaline lead acetate. IR spectrum of the product shows characteristic absorption of lactose unit in the range of 900-910, 1000-1100 and 1200-1300  $\text{cm}^{-1}$  (ref. 7, 8). The coupling constant of the anomeric proton ranged between 9-10 Hz which indicated the  $\beta$ -configuration of glycosidic bond<sup>9,10</sup>. Mass spectrum showed the characteristics of lactose unit<sup>11</sup>.


## Experimental Section

Optical rotations  $[\alpha]_D^{31}$  were measured on an EQUIP-TRONICS EQ-800 Digital Polarimeter at 31°C in  $\text{CHCl}_3$ . IR spectra were recorded on a Perkin-Elmer Spectrum RXI FTIR spectrophotometer.  $^1\text{H}$  NMR were obtained on a Bruker DRX-300 NMR spectrometer. Samples were prepared in  $\text{CDCl}_3$  with TMS as an internal reference. The Mass spectra were recorded on a Jeol SX-102 mass spectrometer.

**General procedure for the synthesis of 2-phenylimino-3-aryl-4-S-benzyl-6-hepta-O-acetyl- $\beta$ -lactosylimino-2,3-dihydro-1,3,5-thiadiazine hydrochlorides **3a-g**.** A solution of phenylisocyanodichloride **2** (0.003 M in 5 mL  $\text{CHCl}_3$ ) was added to a solution of 1-aryl-5-hepta-O-acetyl- $\beta$ -D-lactosyl-2-S-benzyl-2,4-isodithiobiuret **1a-g** (0.003 M in 15 mL  $\text{CHCl}_3$ ) and the reaction mixture was refluxed for 3hr. Afterwards the solvent was distilled off to obtain a sticky residue. This residue was triturated with petroleum ether (60-80°C, 60 mL) to afford a pale yellow solid (**3a-g**). The product was purified by recrystallisation from ethanol-water. The homogeneity of the product was checked by TLC using  $\text{CHCl}_3$ -ethyl acetate as the mobile phase. Yield, m.p., optical rotation, elemental analysis and  $R_f$  values are shown in **Table I**.

## Acknowledgement

The authors acknowledge the help of R.S.I.C., C.D.R.I., Lucknow for providing spectral data. They



R =    a: H    d: *p*-tolyl    g: *p*-Cl-phenyl  
          b: *o*-tolyl    e: *o*-Cl-phenyl  
          c: *m*-tolyl    f: *m*-Cl-phenyl

**Scheme I**

**Table I** – Characterisation data of 2-phenylimino-3-aryl-4-S-benzyl-6-hepta-O-acetyl- $\beta$ -lactosylimino-1,3,5-thiadiazine hydrochlorides (3a-g)

| Compd     | Yield % | m.p. °C | $[\alpha]_D^{31*}$ (°)<br>(c=1.092) | Found N<br>(c=0.996) | (Calcd)% S<br>(c=1.004) | R <sub>f</sub> Value | <sup>1</sup> H NMR δ, ppm                                                                                                                                                                                                                                                                  | MS (m/z)                                                                |
|-----------|---------|---------|-------------------------------------|----------------------|-------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| <b>3a</b> | 75.07   | 143     | +64.10<br>(c=1.092)                 | 5.10<br>(5.12)       | 5.75<br>(5.85)          | 0.79                 | 1.84-2.04 (21H, m, 7-COCH <sub>3</sub> ), 2.14-2.25, (2H,m,lactose unit), 3.76-3.88 (3H,m,2H,CH <sub>2</sub> -S, 1H, lactose unit), 4.02 -4.15 (4H,m,2CH <sub>2</sub> -O), 4.48-5.10 (5H,m, lactose unit), 5.32-5.36 (2H,t,1H, anomic J=9.9 Hz., 1H, lactose unit), 7.14-7.54 (15H,m,Ar-H) | 1094 (M+1) <sup>+</sup> , 1052, 992, 618, 558, 331, 169(Base peak), 109 |
| <b>3b</b> | 69.27   | 138     | +50.20<br>(c=0.996)                 | 5.01<br>(5.05)       | 5.69<br>(5.78)          | 0.89                 | --                                                                                                                                                                                                                                                                                         | --                                                                      |
| <b>3c</b> | 72.28   | 167     | +79.68<br>(c=1.004)                 | 4.97<br>(5.05)       | 5.71<br>(5.78)          | 0.40                 | 1.84-2.15 (21H, m, 7-COCH <sub>3</sub> ), 2.34-2.40 (3H,s,Ar-CH <sub>3</sub> ), 3.67-4.36 (7H,m, 2H,CH <sub>2</sub> -S, 4H,2CH <sub>2</sub> -O, 1H,lactose unit), 4.48-5.10 (7H,m,lactose unit), 5.26-5.35 (2H, t, 1H, anomic J=9.0 Hz., 1H,lactose unit), 6.82-7.54 (14H,m,Ar-H)          | 1108 (M+1) <sup>+</sup> , 931, 643, 331, 169 (Base peak), 109           |
| <b>3d</b> | 75.30   | 151     | +128.08<br>(c=1.068)                | 5.03<br>(5.05)       | 5.64<br>(5.78)          | 0.69                 | --                                                                                                                                                                                                                                                                                         | --                                                                      |

— *Contd*

**Table I** — Characterisation data of 2-phenylimino-3-aryl-4-S-benzyl-6-hepta-O-acetyl- $\beta$ -lactosylimino-2,3-dihydro-1,3,5-thiadiazine hydrochlorides (**3a-g**) — *Contd*

| Compd     | Yield % | m.p. °C | $[\alpha]_D^{31*}$ (°) | Found (Calcd)% | R <sub>f</sub> Value | <sup>1</sup> H NMR δ ppm | MS (m/z)                                                                                                                                                                                                                                                 |
|-----------|---------|---------|------------------------|----------------|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>3e</b> | 64.32   | 147     | -27.57 (c=1.088)       | 4.96 (4.96     | 5.58 (5.67)          | 0.78                     | --                                                                                                                                                                                                                                                       |
| <b>3f</b> | 55.55   | 148     | +23.92 (c=0.836)       | 4.90 (4.96     | 5.54 (5.67)          | 0.75                     | --                                                                                                                                                                                                                                                       |
| <b>3g</b> | 64.32   | 172     | +57.47 (c=1.044)       | 4.89 (4.96     | 5.61 (5.67)          | 0.68                     | 1.82-2.11 (21H,m,7-COCH <sub>3</sub> ), 2.16-2.19 (2H,m,lactose unit), 3.76-4.19 (6H,m, 2H,CH <sub>2</sub> -S, 4H,2CH <sub>2</sub> -O), 4.43-5.11 (6H,m,lactose unit), 5.29-5.35 (2H,t, 1H,anomeric J=9.0 Hz., 1H,lactose unit), 7.14-7.54 (14H,m, Ar-H) |

\* All  $[\alpha]_D^{31}$  values were measured in CHCl<sub>3</sub>.

are also thankful to Prof. R. N. Kale, Head, Department of Chemistry, and Principal Dr. V. B. Wagh for encouragement and necessary facilities.

## References

- 1 Nishikawa Y & Fukuoka F, *Chem Pharm Bull*, 24, **1976**, 387.
- 2 Conrow R B & Bernstein S, *J Org Chem*, 36, **1971**, 863.
- 3 Pathe P P & Paranjpe M G, *Indian J Chem*, 20B, **1981**, 824.
- 4 Pathe P P, Ambekar M W, Nimdeokar N M & Paranjpe M G, *J Indian Chem Soc*, 59, **1982**, 670.
- 5 Krall H & Gupta R D, *J Indian Chem Soc*, 62, **1985**, 629.
- 6 Witczak Z J, *Adv Carbohydrate Chem Biochem*, 44, **1984**, 91.
- 7 Ortiz Mellet & Furnandez Garcia, *Sulfur Reports*, 19, **1996**, 61.
- 8 Dai Zhiqun, Qu Fangi, Wu Chengtai & Li Wei, *J Chem Res (S)*, **2001**, 106.
- 9 Varma R, Kulkarni S Y, Jose C I & Pansave V S, *Carbohydrate Res*, 133, **1984**, 25.
- 10 Lemieux R U & Driguez H, *J Am Chem Soc*, 97, **1975**, 4069.
- 11 Bax A, Egan W & Kovac P, *J Carbohydrate Chem*, 3, **1984**, 593.
- 12 Jose L, Blanco Jimenez, Barria C S, Benito J M, Mellet C O, Fuentes Jose, Satoyo-Gonzalez F, Jose M & Furnandez Garcia, *Synthesis*, 11, **1999**, 1907.
- 13 Jorgen L & Sigfrid S, *Adv Carbohydrate Chem Biochem*, 29, **1974**, 98.